
UNIVERSAL CHESS INTERFACE
2024 MAR 00 • DRAFT

Introduction

This specification governs the interaction between two processes named
the client and the engine. Graphical interfaces, terminal emulators, and
scripts and utilities are examples of clients. Prescriptive text begins with
section 1 Definitions.

Getting Started

This section needs to be written! It should contain enough for a beginner to
add basic UCI support to their engine. Maybe the specification should define a

“basic” subset of UCI?

Conventions

A small H before a number indicates that it is written in hexadecimal;
for example, H10 = 16. Byte sequences of Unicode scalar values encoded
with UTF-8 are set in teal; for example, u¢i = ⟨ H75, Hc2, Ha2, H69⟩ .

Special terms defined by the specification are highlighted in purple and
inline comments are set ※ after a reference mark, in grey.

A blue box is used to describe a convention that clients and engines
are encouraged to follow, usually to do with the interpretation or
meaning of the messages that clients and engines send. A blue
box is also used to provide a recommendation, usually to do with
implementation-defined behavior.

A grey box is used to provide an explanative note or comment.

A green box is used to provide an example of conforming behavior.

Text within colored boxes is nonnormative.



1 Definitions

1·1 The engine’s standard input and output must be open file descriptors,
and the engine’s standard error must be an open file descriptor until
closed by the engine. The sequence of bytes that the client sends to
the engine via the engine’s standard input is the input sequence. The
sequence of bytes that the engine sends to the client via the engine’s
standard output is the output sequence.

There are no requirements for an engine’s standard error except
that it be open. For example, the engine’s standard error may be
directed to a null file, to the client’s standard output or standard
error, or to a log file. There are accordingly no restrictions on the
sequence of bytes that the engine writes to its standard error.

let readbyte! : FileDescriptor -> Byte | EOF

1·2 A message terminator is the byte pair ⟨ H0d, H0a⟩ or the byte H0a alone
when it is not preceded by the byte H0d. ※ Decoded as UTF-8, these
bytes are U+000D CARRIAGE RETURN and U+000A LINE FEED.

This disallows some pairs of Unicode scalar values encoded with
UTF-16, such as ⟨ U+010D LATIN SMALL LETTER C WITH CARON, U+0A05
GURMUKHI LETTER A ⟩ encoded as UTF-16 in big-endian byte order.
It’s assumed that such pairs will rarely occur, and that the incon-
venience of this limitation is less than the difficulties that would
arise if the specification attempted to require locale awareness.

In almost all cases, the input and output sequences should be valid
UTF-8. However, the input and output sequences are not required to
be valid UTF-8, which allows clients and engines to send most file
system paths (which may be opaque sequences of bytes, as in Linux,
or unicode scalar values encoded as UTF-16, as in Windows) in their
native representation.



1·3 Message terminators divide the input sequence and output sequence
into messages, that is, a message is a (possibly empty) subsequence of
bytes that does not contain a message terminator, and every byte of the
input and output sequences is either part of a message or a message
terminator. The messages within the input sequence are client messages
and the messages within the output sequence are engine messages.

def readmessage!(fd : FileDescriptor) : List(Byte) | EOF
seq <- empty
hd <- readbyte!(fd)
repeat

match hd
eof => return (if empty?(seq) then eof else seq)
H0d => match readbyte!(fd)

eof => append!(seq, hd) • return seq
H0a => return seq
pk => append!(seq, hd) • hd <- pk

H0a => return seq
* => append!(seq, hd) • hd <- readbyte!(fd)

1·4 The byte H20 divides messages into tokens, that is, a token is a sequence
of bytes that are not H20, and every byte of a message is either part of
a token or is H20. ※ Decoded as UTF-8, this is U+0020 SPACE.

In some cases, only the beginning of a message will be viewed
as a collection of tokens and the remainder will be viewed as a
continuous byte sequence.

def gettoken!(seq : List(Byte)) -> List(Byte) | None
return none if empty?(seq)
while first(seq) = H20

shift!(seq) • return none if empty?(seq)
tok <- empty
while first(seq) ≠ H20

append!(tok, first(seq))
shift!(seq) • return tok if empty?(seq)



while first(seq) = H20
shift!(seq) • return tok if empty?(seq)

return tok

1·5 An algebraic move token is a token of the form
[a–h][1–8][a–h][1–8][qrbn]?

1·6 A Forsyth–Edwards Notation (FEN) sequence is a sequence of six tokens
⟨board, side-to-move, rights, EP-target, DFZ, move-number⟩ of the form

board = row/row/row/row/row/row/row/row
row = 8 [1–8]? ([KQRBNPkqrbnp][1–8]? )+

side-to-move = w b
rights = - ((K?Q?k?q? ) ∩ [KQkq]+)

EP-target = - [a–h][36]
DFZ = 0 [1–9][0–9]*

move-number = [1–9][0–9]*
※ The dash “-” is U+002D HYPHEN-MINUS.

For each row of board, map K,Q, ...,p to 1 and map 1,2, ...,8 to 1, 2, ..., 8.
The sum of the numbers must be 8.

1·7 TODO FEN corresponds to a chess position in the natural way, as described
elsewhere. Note need not be reachable from starting position. Define legality
of a move from a position.

1·8 A violation is any violation of the requirements of the specification by
the client or engine. When a violation occurs, or when the requirements
of the specification are otherwise not met, the specification imposes no
further requirements on the behavior of the client or engine.

1·9 An error is a condition that resembles a violation but that the client and
engine are expected to handle.

2 Client Messages

2·1 TODO

3 Engine Messages

3·1 TODO



4 State Machine

4·1 TODO

5 Notation

5·1 TODO explain the language used for reference implementation


