
UNIVERSAL CHESS INTERFACE
NOVEMBER 2024 • DRAFT

Introduction

This specification governs the interaction between two processes named
the client and the engine. ※ Graphical interfaces, terminal emulators, and
scripts and utilities are examples of clients. The text of sections 1–4 is
normative (except within comments and colored boxes, described in the
section Notation below).

Getting Started

This section needs to be written! It should contain enough for a beginner to
add basic UCI support to their engine.



Notation

An x preceding a number indicates that it is written in hexadecimal; for
example, x10 = 16. A letter or word set in teal is an abbreviation for a
byte or sequence of bytes encoded in ASCII; for example, k = x6b and
uci = ⟨x75, x63, x69⟩ . Special terms defined by the specification are
set in purple when they are first introduced and inline comments are
set ※ after a reference mark. Comments are nonnormative.

A blue box is used to describe a convention that clients and engines
are encouraged to follow, usually to do with the interpretation or
meaning of the different messages that clients and engines can send.
A blue box is also used to provide a recommendation, usually to
do with implementation-defined behavior.

A grey box is used to provide an explanative note or comment.

A green box is used to provide an example of conforming behavior.

Text within colored boxes is nonnormative.

Angle brackets are sometimes used to delimit sequences and commas
sometimes used to separate items in a sequence. For example, ⟨go depth
d movetime 1000⟩ and ⟨go, depth, d, movetime 1000⟩ are equivalent,
as are go depth 8 movetime 1000 and ⟨go, depth, 8, movetime, 1000⟩.

Patterns for sequences of bytes are written using traditional syntax for
regular expressions:

parentheses group
brackets byte class
en dash byte range
vertical bar alternation
plus sign repetition (once or more)
question mark repetition (zero times or once)
braces repetition (n times, or at least n₁ and at most n₂)

Patterns for sequences of tokens are written using analogous syntax.



1 Definitions

1·1 A violation is any violation, by the client or engine, of the requirements
of the specification. When a violation occurs, or when the requirements
of the specification are otherwise not met, the specification imposes no
further requirements on the behavior of the client or engine.

1·2 The engine’s standard input and output must be open file descriptors
and the engine’s standard error must be an open file descriptor until
closed by the engine. The sequence of bytes that the client sends to the
engine via the engine’s standard input is the client stream. The sequence
of bytes that the engine sends to the client via the engine’s standard
output is the engine stream.

There are no requirements for an engine’s standard error except
that it be open. For example, the engine’s standard error may be
directed to a null device, to the client’s standard output or standard
error, or to a log file. There are accordingly no restrictions on the
sequence of bytes that the engine writes to its standard error.

No particular encoding is specified: the client and engine streams
are not required to be encoded sequences of Unicode scalar values

(or code points of any other character set). The specification instead
governs the client and engine streams as sequences of bytes per se.

However, clients and engines are recommended to use UTF-8 for
client−engine communication so that engine, author, and option
names are displayed properly. Note that clients and engines may
use different encodings for other interfaces, such as for file system
paths that are passed as arguments to the operating system. For
example, the client and engine may be communicating over a
network connexion and the client may be running on Linux (where
paths are arbitrary byte sequences that do not contain x00 or x2f)
but the engine may be running on Windows (where NTFS is a
common filesystem, which stores file names in UTF-16, but where
older libraries or APIs may expect paths encoded in the local code
page), and so the path of a tablebase file may require transcoding,
implicitly or explicitly.

1·3 A message terminator is the pair ⟨x0d, x0a⟩ or x0a alone when it is not
preceded by x0d.



1·4 Message terminators divide the client and engine streams into messages;
that is, a message is a (possibly empty) sequence of bytes that does not
contain a message terminator, and every byte of the client and engine
streams is either part of a message or part of a message terminator. The
messages within the client stream are client messages and the messages
within the engine stream are engine messages.

This precludes the proper use of some encodings for client−engine
communication, such as UTF-16 or UTF-32 (since in UTF-16 and UTF-32,
the byte x0a appears in the encodings of various scalar values,
whereas in UTF-8, the byte x0a only appears in the encoding for
U+000A LINE FEED).

Note that x00 is not disallowed.

1·5 The byte x20 divides messages into tokens, that is, a token is a non-
empty sequence of bytes that are not x20, and every byte of a message
is either part of a token or is x20.

In some cases, only the beginning of a message will be viewed
as a collection of tokens and the remainder will be viewed as a
contiguous sequence of bytes.

1·6 For a given sequence of tokens that begin a message (the prefix), the
suffix is the contiguous sequence of bytes starting with the first byte that
is not x20 after the prefix and ending with the last byte of the message.

1·7 A sequence of bytes that does not contain any tokens (that is, an empty
sequence or a sequence of one or more repetitions of x20) is void.

1·8 A position is a structure with the following fields:

An 8×8 array of elements, each of which is either NONE or a color−
kind pair (where the color is white or black and the kind is king,
queen, rook, bishop, knight, or pawn). This array is called the board
and is indexed along one axis by the letters “a” through “h” inclusive
and along the other axis by the numerals “1” through “8” inclusive.
A color−kind pair is called a piece.

A color, white or black, called the side to move.

A collection of values, called the rights, which may be empty or include
one or more of the following: the white kingside castling right, the



white queenside castling right, the black kingside castling right, and
the black queenside castling right.

A value called the en passant target, which is either NONE or one of
a3, b3, ..., h3, or a6, b6, ..., h6.

A nonnegative integer called the depth from zeroing. ※ This is the
number of moves that have been played (none of which are captures
or pawn moves) since the last capture or pawn move, measured in ply.

The side waiting of a position is the opposite color of the side to move.

1·9 For a given position, a king is in check if it is attacked by one or more
pieces of the opposite color, where “attacked” is defined analogously to
article 3.1.2 of the 2023 FIDE Laws of Chess.

1·10 A position is valid if the following conditions are all satisfied:

The board contains exactly one white king and one black king.

The board does not contain any pawns at indices a1, b1, ..., h1 and
does not contain any pawns at indices a8, b8, ..., h8.

If the rights include the white kingside castling right, the white king
is at index e1 and there is a white rook at index h1. If the rights
include the white queenside castling right, the white king is at index
e1 and there is a white rook at index a1. If the rights include the
black kingside castling right, the black king is at index e8 and there
is a black rook at index h8. If the rights include the black queenside
castling right, the black king is at index e8 and there is a black rook
at index a8.

If the en passant target is n3 for some n, then the side to move is
black, there is a white pawn at index n4, and at n2 and n3 the board
is NONE. If the en passant target is n6 for some n, then the side to
move is white, there is a black pawn at index n5, and at n6 and n7
the board is NONE.

The king of the color of the side waiting is not in check.

The depth from zeroing is 100 or less.

There is at least one valid move that can be applied (as described in
1·12 below). ※ This means the position is not checkmate or stalemate.



A valid position (as defined above) need not be reachable from the
starting position.

Some engines designed for gameplay rather than analysis may addi-
tionally require that the positions they are sent must be reachable
from the starting position. Such constraints are specific to engines,
and are not constraints of the Universal Chess Interface.

The 2023 FIDE Laws of Chess state that the game ends immediately
when a player cannot checkmate the king by any series of legal
moves, but this condition does not cause a position to be invalid.

Engines are recommended to accept positions that are checkmate
or stalemate even though they are not required to handle receiving
such positions. For such positions, engines should report null as the
best move (see 1·18 below).

1·11 A move is a structure of three values: a board index called the source,
a board index called the destination, and a field called the promotion
kind that is either NONE or queen, rook, bishop, or knight.

1·12 For a given position P, a move M is valid and the position Q immediately
follows when M is applied if P, M, and Q fulfill requirements analogous
to articles 3.1 through 3.9 inclusive of the 2023 FIDE Laws of Chess, except

the requirement for a pawn to advance by two is instead that the
pawn is white and its index is one of a2, b2, ..., h2 or that the pawn
is black and its index is one of a7, b7, ..., h7, and

the requirement for an en passant capture is instead that the en
passant target is not none and the capturing pawn attacks the en
passant target.

In particular, when M is valid, there is a piece of the color of the side to
move in the board of P at the source of M and there is a piece of the
same color and kind (or a piece of the same color and the promotion
kind of M) in the board of Q at the destination of M.

The side to move of Q is the opposite color of the the side to move of P. If
M is a king or rook move, the rights of Q do not include the corresponding
castling right or castling rights. If M advances a pawn by two, the en
passant target of Q is the index between the source and destination of M.



If M is a capture or a pawn move, the depth from zeroing of Q is zero;
otherwise, the depth from zeroing of Q is the depth from zeroing of P
plus one.

1·13 A Forsyth–Edwards Notation (FEN) record is a sequence of six tokens
⟨board, side to move, rights, EP target, DFZ, move number⟩ of the form

board = row (/row ){7}
row = 8 [1–7KQRBNPkqrbnp]+

side to move = w b

rights = - K?Q?k?q?
EP target = - [a–h][36]

DFZ = 0 [1–9][0–9]? 100

move number = [1–9][0–9]{0, 3}
※ The dash “-” is x2d.

with the following additional constraints:

In each row, numerals must not be adjacent; that is, there must not
be two or more immediately consecutive numerals.

For each row, map K,Q, ...,p to 1, map 1,2, ...,8 to 1, 2, ..., 8, and then
define the width as the sum of these numbers. For each row, the
width must be 8.

1·14 An FEN record describes a position if it maps to the position in a manner
analogous to that described in article 16.1.3 of the Portable Game Notation
Specification.

1·15 The starting position is the position described by the FEN record
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1.

1·16 A move token is a token of the form
[a–h][1–8][a–h][1–8][qrbn]?

The first and second bytes of a move token interpreted in the natural
way as a board index is the move token’s source, the third and fourth
bytes of a move token interpreted in the natural way as a board index is
the move token’s destination, and the fifth byte (if present) interpreted
in the natural way as a kind is the promotion kind. If the fifth byte is
not present, the promotion kind of the move token is NONE.

1·17 For a given position P, a move token T denotes a move M if M is valid
for P and the source, destination, and promotion kind of T match the
source, destination, and promotion kind of M (respectively).



1·18 A null token is a token of the form 0000.

2 Client Messages

2·1 A client message has one of nine types indicated by the first token of the
message (uci, debug, setoption, ucinewgame, position, isready,
go, stop, and quit).

2·2 A uci, ucinewgame, isready, stop, or quit message is well-formed if
it contains exactly one token.

2·3 A debug message is well-formed if it contains exactly two tokens, either
⟨debug on⟩ or ⟨debug off⟩.

If engines have debugging information to expose via the client
(that is, through standard output rather than standard error), they
should feely send info string messages with this information after
receiving debug on and suppress these messages after receiving
debug off.

2·4 A setoption message is well-formed if it has a prefix of the form
⟨setoptionname tok+value⟩, where tok+ is one or more tokens matching
an option name listed in an option message enqueued by the engine,
and a suffix satisfying the condition(s) for the corresponding option type:

If check, the suffix contains exactly one token, either true or false.

If spin, the suffix contains a single token which is a decimal integer,
either 0 or of the form –? [1–9][0–9]*, not less than the minimum
value nor greater than the maximum value specified by the engine.

If combo, the suffix contains one or more tokens and the sequence of
tokens in the suffix is one of the sequences specified by the engine.

If string, the suffix is not void. The suffix <empty> indicates an
empty value. ※ The value <empty> therefore cannot be specified.

A setoption message is also well-formed if it is of the form ⟨setoption
name tok+ ⟩ where tok+ is one or more tokens matching an option name
listed in an option message enqueued by the engine for which the
corresponding option type is button.

2·5 A position message is well-formed if it has the form
⟨position (startpos fen fen6 ) (moves mov+)? ⟩

where fen6 is an FEN record and mov+ is one or more move tokens. If fen
is specified, the position described by fen6 must be valid. Let P0 be the



starting position if startpos is specified and the position described by
fen6 if fen is specified. If moves is specified:

Let N be the number of move tokens specified.

For n from 0 to N−1 inclusive, the n-th token Tn of mov+ must denote
a move Mn from Pn. Then let Pn+1 be the position that immediately
follows from Pn when Mn is applied.

The position PN must be valid.

The final position (PN if moves is specified, otherwise P0) is the position
described by the position message.

2·6 A go message is well-formed if ...

3 Engine Messages

An engine message has one of six types indicated by the first token of
the message (id, option, uciok, info, readyok, and bestmove).



4 States and Transitions

4·1 The client and the engine both may always enqueue or dequeue a void
message. When the client or engine dequeues a void message, it must
ignore the message, behaving as if the message were not transmitted.

The remainder of section 4 is written without mention of void messages;
consideration for void messages is tacit.

4·2 Once the engine dequeues a uci message from the client stream, at every
point in time the engine is in one of six states. The engine begins in the
initial state. When the engine dequeues a client message or enqueues
an engine message, the state may change; this is a transition.

There is a particular invariant that transition rules should satisfy
due to the nature of standard input and standard output.

Firstly, the moment a message is read necessarily occurs some
duration after the moment that the message is written (that is, the
sender does not directly manipulate the memory of the recipient).
Secondly, a process cannot both read from a file descriptor and write
to a file descriptor as an atomic transaction (that is, “time of check
to time of use” race conditions cannot be prevented).

In particular, it is impossible for a process to guarantee that a write
to file descriptor F is not preceded by a write to file descriptor G
by another process. Even if the process attempts to read G, finds it
empty, and immediately writes to F, it is possible for an intervening
write to G to occur before the write to F occurs.

As a result, if a transition from state A to state B occurs when the
engine sends a message, it is impossible to guarantee that a message
sent by the client in state A can actually be read by the engine in
state A (and not in state B). Therefore, any message that the client
is allowed to send in state A should be allowed in state B. The same
principle holds vice versa, and so we can state the invariant more
generally as follows:

For distinct processes 1 and 2, for all pairs of states A and B, if a transition
from A to B can be caused by process 1 sending a message, every messages
that process 2 is allowed to send in state A must also be allowed in state B.



4·3 In some states, the engine may dequeue a message. If the engine
dequeues a message, the message must be well-formed and have an
allowed message type given the state of the engine.

This is not meant to imply that standard input is ever required to
be empty, but meant to indicate that in some states the engine is
not allowed to read standard input (or at least must behave as if it
has not read standard input).

4·4 In all states, the engine may enqueue a message. If the engine enqueues a
message, the message must be well-formed and have an allowed message
type given the state of the engine.

4·5 The allowed message types that may be dequeued and enqueued in each
state are enumerated in the following table. If the NEXT column is not
empty for a row, the action listed in the row (dequeuing or enqueuing
a message of a particular type) causes a transition to the listed state.

STATE ALLOWED NEXT

initial ENQUEUE
id

option

uciok idle

idle
DEQUEUE

ENQUEUE

debug

setoption

ucinewgame

position

isready

go

stop

info

sync
active

sync ENQUEUE
info

readyok idle

active
DEQUEUE

ENQUEUE

debug

isready

stop

info

bestmove

ping
halt

idle

ping ENQUEUE
info

readyok active

halt ENQUEUE
info

bestmove idle



Engines and clients are not required to ignore (or otherwise handle)
unknown or unexpected tokens (these are simply violations).

4·6 The client must enqueue a ucinewgame message at least once before
before it enqueues a go message for the first time after enqueuing uci.

Engines are strongly recommended to behave identically whether
or not a ucinewgame message is ever sent.

4·7 The client must enqueue a position message at least once before it
enqueues a go message for the first time after enqueuing uci.

Engines are strongly recommended, if a position message is not
sent before the first gomessage, to behave as if position startpos
were sent.

Note that the client is not required to send isready before go.

Note that the client may send ucinewgame after position before
go without sending any additional intervening position message.

Note that ucinewgame does not reset the current board state nor
does it reset the move history. (Only position changes the current
board state and move history.)

4·8 The specification ceases to govern the interaction between the client and
the engine when the client enqueues a well-formed quit message.

Engines are recommended to stop searching immediately and exit.
Clients are recommended, if the engine is their subprocess, to
provide a grace period before terminating the engine.



5 Examples

let read byte! : File Descriptor Ȃ-> Byte | EOF

def withoutCR(msg : List(Byte)) : List(Byte)

if empty?(msg) or last(msg) ≠ x0d then return msg

return withoutLast(msg)

def read message!(mut fd : File Descriptor) : List(Byte) | EOF

msg Ȃ<- empty

repeat

match read byte!(fd)

eof Ȃ=> return (if empty?(msg) then eof else msg)

x0a Ȃ=> return withoutCR(msg)

val Ȃ=> append!(msg, val)

def get token!(mut msg : List(Byte)) : List(Byte) | None

repeat

if empty?(msg) then return none

if first(msg) ≠ x20 then break

removeFirst!(msg)

tok Ȃ<- empty

repeat

append!(tok, first(msg))

removeFirst!(msg)

if empty?(msg) then return tok

if first(msg) = x20 then break

return tok


